Inspired by my own post about simulating F# active patterns in C# and remembering an old crazy post about using try/catch to emulate a switch on types, I came up with this utility class that acts and looks like a switch statement, but can do a lot more. The basic idea was to use a fluent interface to get the same functionality of switch, but also add the possibility of using complex objects as case values or even code conditions.


First, here is the source code:
namespace Constructs
{
public static class Do
{
public static Switch<T> Switch<T>(T value)
{
return Constructs.Switch<T>.From(value);
}
}

public class Switch<T>
{
private bool _isDone;
private T _value;
private Type _valueType;

private Switch(T value)
{
this._value = value;
}

public static Switch<T> From(T value)
{
return new Switch<T>(value);
}

public Switch<T> Case(Func<T> valueFunc, Action<T> action, bool fallThrough = false)
{
if (_isDone) return this;
return Case(valueFunc(), action, fallThrough);
}

public Switch<T> Case(T value, Action<T> action, bool fallThrough = false)
{
if (_isDone) return this;
return If(v => object.Equals(value, v), action, fallThrough);
}

public void Default(Action<T> action)
{
if (_isDone) return;
action(_value);
}

public Switch<T> If(Func<T, bool> boolFunc, Action<T> action, bool fallThrough = false)
{
if (_isDone) return this;

if (boolFunc(_value))
{
action(_value);
_isDone = !fallThrough;
}

return this;
}

private Type getValueType()
{
if (_valueType != null) return _valueType;
if (object.Equals(_value, null)) return null;
_valueType = _value.GetType();
return _valueType;
}

public Switch<T> OfStrictType<TType>(Action<T> action, bool fallThrough = false)
{
if (_isDone) return this;
if (getValueType() == typeof(TType))
{
action(_value);
_isDone = !fallThrough;
}
return this;
}

public Switch<T> OfType<TType>(Action<T> action, bool fallThrough = false)
{
if (_isDone) return this;
if (getValueType() == null) return this;
if (typeof(TType).IsAssignableFrom(getValueType()))
{
action(_value);
_isDone = !fallThrough;
}
return this;
}
}
}
I use the static class Do to very easily get a Switch<T> object based on a value, then run actions on that value. The Switch class has a _value field and an _isDone field. When _isDone is set to true, no action is further executed (like breaking from a switch block). The class has the methods Case, and If, as well as OfType and OfStrictType, all of which execute an action if either the value, the function, the condition or the type provided match the initial value. Default is always last, executing an action and setting _isDone to true;

Here is an example of use:
for (var i = 0; i < 25; i++)
{
Do.Switch(i)
.Case(10, v => Console.WriteLine("i is ten"), true)
.Case(() => DateTime.Now.Minute / 2, v =>
Console.WriteLine($"i is the same with half of the minute of the time ({v})"), true)
.If(v => v % 7 == 0, v => Console.WriteLine($"{v} divisible by 7"))
.Default(v => Console.WriteLine($"{v}"));
}
where the numbers from 0 to 25 are compared with 10, the half of the minutes value of the current time and checked if they are divisible by 7, else they are simply displayed. Note that the first two Case methods receive an optional bool parameter that allows the check to fall through, so that the value is checked if it is equal to 10, but also if it is twice the minute value or divisible by 7. On the other hand, if the value is divisible by 7 it will not display the value in the Default method.

Here is an example that solves the type check with the same construct:
var f = new Action<object>(x =>
Do.Switch(x)
.OfType<string>(v => Console.WriteLine($"{v} is a string"))
.OfType<DateTime>(v => Console.WriteLine($"{v} is a DateTime"))
.OfType<int>(v => Console.WriteLine($"{v} is an integer"))
.OfType<object>(v => Console.WriteLine($"{v} is an object"))
);
f(DateTime.Now);
f("Hello, world!");
f(13);
f(0.45);

And finally, here is the solution to the famous FizzBuzz test, using this construct:
for (var i = 0; i < 100; i++)
{
Do.Switch(i)
.If(v => v % 15 == 0, v => Console.WriteLine($"FizzBuzz"))
.If(v => v % 3 == 0, v => Console.WriteLine($"Fizz"))
.If(v => v % 5 == 0, v => Console.WriteLine($"Buzz"))
.Default(v => Console.WriteLine($"{v}"));
}

Now, the question is how does this fare against the traditional switch? How much overhead does it add if we would, let's say, take all switch/case blocks and replace them with this construct? This brings me to the idea of using AOP to check if the construct is of a certain shape and then replace it with the most efficient implementation of it. With the new Roslyn compiler I think it is doable, but beyond the scope of this post.

I have tried, in the few minutes that it took to write the classes, to think of performance. That is why I cache the value type, although I don't think it really matters that much. Also note there is a difference between Case(v=>SomeMethodThatReturnsAValue(),DoSomething()) and Case(SomeMethodThatReturnsAValue(),DoSomething()); In the first case, SomeMethodThatReturnsAValue will only be executed if the switch has not matched something previously, while in the second, the method will be executed to get a value and then, when the time comes, the switch will compare it with the initial value. The first method is better, with only 4 extra characters.

Hope it helps someone.

F# has an interesting feature called Active Patterns. I liked the idea and started thinking how I would implement this in C#. It all started from this StackOverflow question to which only Scala answers were given at the time.

Yeah, if you read the Microsoft definition you can almost see the egghead that wrote that so that you can't understand anything. Let's start with a simple example that I have shamelessly stolen from here.
// create an active pattern

let (|Int|_|) str =
match System.Int32.TryParse(str) with
| (true, int) -> Some(int)
| _ -> None

// create an active pattern

let (|Bool|_|) str =
match System.Boolean.TryParse(str) with
| (true, bool) -> Some(bool)
| _ -> None

// create a function to call the patterns

let testParse str =
match str with
| Int i -> printfn "The value is an int '%i'" i
| Bool b -> printfn "The value is a bool '%b'" b
| _ -> printfn "The value '%s' is something else" str

// test

testParse "12"
testParse "true"
testParse "abc"

The point here is that you have two functions that return a parsed value, either int or bool, and also a matching success thing. That's a problem in C#, because it is strongly typed and if you want to use anything than boxed values in objects, you need to define some sort of class that holds two values. I've done that with a class I called Option<T>. You might want to see the code, but it is basically a kind of Nullable class that accepts any type, not just value types.
Click to expand

Then I wrote code that did what the original code did and it looks like this:
var apInt = new Func<string, Option<int>>(s =>
{
int i;
if (System.Int32.TryParse(s, out i)) return new Option<int>(i);
return Option<int>.Empty;
});
var apBool = new Func<string, Option<bool>>(s =>
{
bool b;
if (System.Boolean.TryParse(s, out b)) return new Option<bool>(b);
return Option<bool>.Empty;
});

var testParse = new Action<string>(s =>
{
var oi = apInt(s);
if (oi.HoldsValue)
{
Console.WriteLine($"The value is an int '{oi.Value}'");
return;
}
var ob = apBool(s);
if (ob.HoldsValue)
{
Console.WriteLine($"The value is an bool '{ob.Value}'");
return;
}
Console.WriteLine($"The value '{s}' is something else");
});

testParse("12");
testParse("true");
testParse("abc");

It's pretty straighforward, but I didn't like the verbosity, so I decided to write it in a fluent way. Using another class called FluidFunc that I created for this purpose, the code now looks like this:
var apInt = Option<int>.From<string>(s =>
{
int i;
return System.Int32.TryParse(s, out i)
? new Option<int>(i)
: Option<int>.Empty;
});

var apBool = Option<bool>.From<string>(s =>
{
bool b;
return System.Boolean.TryParse(s, out b)
? new Option<bool>(b)
: Option<bool>.Empty;
});

var testParse = new Action<string>(s =>
{
FluidFunc
.Match(s)
.With(apInt, r => Console.WriteLine($"The value is an int '{r}'"))
.With(apBool, r => Console.WriteLine($"The value is an bool '{r}'"))
.Else(v => Console.WriteLine($"The value '{v}' is something else"));
});

testParse("12");
testParse("true");
testParse("abc");

Alternately, one might use a Tuple<bool,T> to avoid using the Option class, and the code might look like this:
var apInt = FluidFunc.From<string,int>(s =>
{
int i;
return System.Int32.TryParse(s, out i)
? new Tuple<bool, int>(true, i)
: new Tuple<bool, int>(false, 0);
});

var apBool = FluidFunc.From<string,bool>(s =>
{
bool b;
return System.Boolean.TryParse(s, out b)
? new Tuple<bool, bool>(true, b)
: new Tuple<bool, bool>(false, false);
});

var testParse = new Action<string>(s =>
{
FluidFunc
.Match(s)
.With(apInt, r => Console.WriteLine($"The value is an int '{r}'"))
.With(apBool, r => Console.WriteLine($"The value is an bool '{r}'"))
.Else(v => Console.WriteLine($"The value '{v}' is something else"));
});

testParse("12");
testParse("true");
testParse("abc");

As you can see, the code now looks almost as verbose as the original F# code. I do not pretend that this is the best way of doing it, but this is what I would do. It also kind of reminds me of the classical situation when you want to do a switch, but with dynamic calculated values or with complex object values, like doing something based on the type of a parameter, or on the result of a more complicated condition. I find this fluent format to be quite useful.

One crazy cool idea is to create a sort of Linq provider for regular expressions, creating the same type of fluidity in generating regular expressions, but in the end getting a ... err... regular compiled regular expression. But that is for other, more epic posts.

The demo solution for this is now hosted on Github.

Here is the code of the FluidFunc class, in case you were wondering:
public static class FluidFunc
{
public static FluidFunc<TInput> Match<TInput>(TInput value)
{
return FluidFunc<TInput>.With(value);
}

public static Func<TInput, Tuple<bool, TResult>> From<TInput, TResult>(Func<TInput, Tuple<bool, TResult>> func)
{
return func;
}
}

public class FluidFunc<TInput>
{
private TInput _value;
private static FluidFunc<TInput> _noOp;
private bool _isNoop;

public static FluidFunc<TInput> NoOp
{
get
{
if (_noOp == null) _noOp = new FluidFunc<TInput>();
return _noOp;
}
}

private FluidFunc()
{
this._isNoop = true;
}

private FluidFunc(TInput value)
{
this._value = value;
}

public static FluidFunc<TInput> With(TInput value)
{
return new FluidFunc<TInput>(value);
}

public FluidFunc<TInput> With<TNew>(Func<TInput, Option<TNew>> func, Action<TNew> action)
{
if (this._isNoop)
{
return this;
}
var result = func(_value);
if (result.HoldsValue)
{
action(result.Value);
return FluidFunc<TInput>.NoOp;
}
return new FluidFunc<TInput>(_value);
}

public FluidFunc<TInput> With<TNew>(Func<TInput, Tuple<bool,TNew>> func, Action<TNew> action)
{
if (this._isNoop)
{
return this;
}
var result = func(_value);
if (result.Item1)
{
action(result.Item2);
return FluidFunc<TInput>.NoOp;
}
return new FluidFunc<TInput>(_value);
}

public void Else(Action<TInput> action)
{
if (this._isNoop) return;

action(_value);
}

}

On the 9th of February I basically held the same talk I did at Impact Hub, only I did better, and this time presented to the ADCES group. Unbeknownst to me, my colleague there Andrei Rînea also held a similar presentation with the same organization, more than two years ago, and it is quite difficult to assume that I was not inspired by it when one notices how similar they really were :) Anyway, that means there is no way people can say they didn't get it, now! Here is his blog entry about that presentation: Bing it on, Reactive Extensions! – story, code and slides

The code, as well as a RevealJS slideshow that I didn't use the first time, can be found at Github. I also added a Javascript implementation of the same concept, using a Wikipedia service instead - since DictService doesn't support JSON.

This post is discussing the solution to the NotSupportedException "This type of CollectionView does not support changes to its SourceCollection from a thread different from the Dispatcher thread" and also the InvalidOperationException "An ItemsControl is inconsistent with its items source".

In the first case you want to bind in Windows Presentation Foundation a collection property from your viewmodel and it says no. What happens is that you are using a BindingList<T> or an ObservableCollection<T> and the binding system is using in the background a CollectionView that wraps it which does not support changes via multiple threads. The solution to this is rather simple: use this piece of code:
BindingOperations.EnableCollectionSynchronization(collection, lockObject);
This short blog post from Florent Pellet explains things a little, but that is ending on a dire note: The ViewModel becomes dependent on the view It also suggests that you need to create a lock object for each UI thread, if you have more.

This works in .NET 4.5 and that is the reason that when you are looking the exception up you get all kind of answers that either suggest you invoke any changes on the Dispatcher UI thread (which I believe is against the idea of having a viewmodel) or weird bastardizations of the collection classes used, like trying to invoke the events for list changes on the dispatcher of the invoking delegate. I've tried that and I got the second InvalidOperationException exception that I will be covering later on :)

But let's go further and examine what is going on. If you look at the method declaration, EnableCollectionSynchronization also allows specifying a synchronization callback, something that you could use to manage weird custom collection classes. The Remarks sections says When you call this overload of the EnableCollectionSynchronization(IEnumerable, Object) method, the system locks the collection when you access it, which implies you are losing some performance, but not much else. In case you have many parallel threads that are modifying your collection, you need to lock it, anyway. You may, of course, create your own high performance system of changing a collection and, maybe, run a separate method to marshal changes from your private data structure to the UI bound one.

Now, the InvalidOperationException "An ItemsControl is inconsistent with its items source" is thrown when the ItemsSource property has become out of sync with the Items property, which is usually generated by the ItemsControl. So when I tried to create my own badass collection class, I managed to avoid the first exception and I got this one. The same solution applies to both cases:
BindingOperations.EnableCollectionSynchronization(collection, lockObject);
Funny enough, you have to run this piece of code on the Dispatcher UI thread.


But where to use it? It would be rather simple to use it in the viewodel constructor, using the ((ICollection)collection)SyncRoot object, or even in the constructor of a class that inherits from either BindingList or ObservableCollection and has nothing but this type of initialization. I believe that, since this is a binding issues, something within WPF, then the binding system should handle it, like some type of synchronizing Binding. For a second I thought that the IsAsync property of the Binding class would solve this by itself, but it wouldn't work. Also, Binding doesn't have any methods to override and BindingBase is an abstract class with internal methods to implement, which of course doesn't work. Otherwise it would have been OK, I believe, to create a special SynchronizedCollectionBinding class that enables collection synchronization at bind time. BTW, if you are thinking to implement everything starting with MarkupExtension, forget it. The Binding class is a bit hardcoded in Visual Studio and it wouldn't actually work as expected.

That's it, folks!

Today I was the third presenter in the ReactiveX in Action event, held at Impact Hub, Bucharest. The presentation did not go as well as planned, but was relatively OK. I have to say that probably, after a while, giving talks to so many people turns from terrifying to exciting and then to addictive. Also, you really learn things better when you are preparing to teach them later, rather than just perusing them.

I will be holding the exact same presentation, hopefully with a better performance, on the 9th of February, at ADCES.

For those interested in what I did, it was a code only demo of a dictionary lookup WPF application written in .NET C#. In the ideal code that you can download from Github, there are three projects that do the exact same thing:
  1. The first project is a "classic" program that follows the requirements.
  2. The second is a Reactive Extensions implementation.
  3. The third is a Reactive Extensions implementation written in the MVVM style.

The application has a text field and a listbox. When changing the text of the field, a web service is called to return a list of all words starting with the typed text and list them in the listbox, on the UI thread. It has to catch exceptions, throttle the input, so that you can write a text and only access the web service when you stop typing, implement a timeout if the call takes too long, make sure that no two subsequent calls are being made with the same text argument, retry three times the network call if it fails for any of the uncaught exceptions. There is a "debug" listbox as well as a button that should also result in a web service query.

Unfortunately, the code that you are downloading is the final version, not the simple one that I am writing live during the presentation. In effect, that means you don't understand the massive size reduction and simplification of the code, because of all the extra debugging code. Join me at the ADCES presentation (and together we can rule the galaxy) for the full demo.

Also, I intend to add something to the demo if I have the time and that is unit testing, showing the power of the scheduler paradigm in Reactive Extensions. Wish me luck!

Stephen Toub wrote this document, as he calls it, but that is so full of useful information that it can be considered a reference book. A 118 pages PDF, Patterns for Parallel Programming taught me a lot of things about .NET parallel programming (although most of them I should have known already :-().

Toub is a program manager lead on the Parallel Computing Platform team at Microsoft, the smart people that gave us Task<T>, Parallel, but also await/async. The team was formed in 2006 and it had the responsibility of helping Microsoft get ready for the shift to multicore and many-core. They had broad responsibility around the company but were centered in the Developer Division because they believed the impact of this fundamental shift in how programming is done was mostly going to be on software developers.

It is important to understand that this document was last updated in 2010 and still some of the stuff there was new to me. However, some of the concepts detailed in there are timeless, like what is important to share and distribute in a parallel programming scenario. The end of the document is filled with advanced code that I would have trouble understanding even after reading this, that is why I believe you should keep this PDF somewhere close, in order to reread relevant parts when doing parallel programming. The document is free to download from Microsoft and I highly recommend it to all .NET developers out there.

Date Published: 7/16/2010 File Size: 1.5 MB

On the 3rd and 9th of February I will be presenting a demo of Reactive Extension in action on a Windows Presentation Foundation app that I am going to be building as I speak, first without and then with Rx. The presentation should be about 30-45 minutes, in Romanian, but I am sure we can accommodate foreign speakers by doing it in English if you request it. These events are all free, but you must register in order to know how many people to prepare for. Here are the Meetup links:
ReactiveX in Action, Wednesday, February 3 2016, 19:00, Impact Hub, Strada Halelor 5, Bucharest
MsSql / Reactive Extensions, Tuesday, February 9 2016, 19:00, Electronic Arts - Afi Park 2, Bulevardul General Vasile Milea 4F, București 061344
See you there!

and has 0 comments
Some of you may have heard of C# 6, the new version of the Microsoft .NET programming language, but what I am not certain about is that you know you can use it right now. I had expected that a new version of the language will be usable from the brand new upcoming fifth version of the .NET runtime, but actually no, you can use it right now in your projects, because the new features have been implemented in the compiler, in Visual Studio and, you have no idea how cool it is until you try, in ReSharper.

One might say: "Hell, I've seen these syntactic sugar thingies before, they are nothing but a layer over existing functionality. New version, my ass, I stick with what I know!", but you run the risk of doing as one of my junior developer colleagues did once, all red faced and angry, accusing me that I have replaced their code with question marks. I had used the null-coalescing operator to replace five line blocks like if (something == null) { ....

Let me give you some examples of these cool features, features that I have discovered not by assiduously learning them from Microsoft release documents, by but installing ReSharper - only the coolest software ever - who recommends me the changes in existing code. Let's see what it does.

Example 1: properties with getters and no setters

Classic example:
public int Count {
get {
return _innerList.Count;
}
}

Same thing using C# 6 features?
public int Count => _innerList.Count;
Cool or what?

Example 2: null checking in a property chain

Classic example:
if (Granddaddy!=null) {
if (Daddy!=null) {
if (Child!=null) {
return Grandaddy.Daddy.Child.SomeStupidProperty;
}
}
}

Same thing using C# 6 features?
return Grandaddy?.Daddy?.Child?.SomeStupidProperty;
Convinced yet?

Example 3: using the name of members as strings

Classic example:
public int Number {
get { return _number; }
set {
if (_number!=value) {
_number=value;
OnPropertyChanged("Number");
//with some custom code you could have used a better, but slower version:
//OnPropertyChanged(()=>Number);
}
}
}

C# 6 version?
public int Number {
get { return _number; }
set {
if (_number!=value) {
_number=value;
OnPropertyChanged(nameof(Number));
// this assumes that we have a base class with a method called OnPropertyChaged, but we can already to things inline:
PropertyChanged?.Invoke(this,new new PropertyChangedEventArgs(nameof(Number))
}
}
}

Example 4: overriding or implementing simple methods

Classic example:
public override string ToString() { 
return string.Format("{0}, {1}", First, Second);
}

Now:
public override string ToString() => $"{First}, {Second}";

Example 5: exception filters

Classic example:
try {
SomethingUnpredictable();
}
catch (Exception e) {
if (e.InnerException!=null) {
UnpackAndLogException(e);
} else {
throw;
}
}

C# 6 version:
try {
SomethingUnpredictable();
}
catch (Exception e) when (e.InnerException!=null) {
UnpackAndLogException(e);
}

Example 6: using static

I don't particularly like this, but it can simplify some code when used right. Classic example:
return degrees*Math.PI/180;

C# 6 way:
//somewhere above:
using static System.Math;

return degrees*PI/180;

There are other more complex features as well, like special index initializers for Dictionary objects, await in catch and finally blocks, Auto-property initializers and Primary Constructors for structs. You can use all these features in any .NET version 4 and above. All you need is the new Roslyn compiler.

Enjoy the new features. I know I will!

There are a lot of people asking around what is the difference between BindingList<T> and ObservableCollection<T> and therefore, there are a lot of answers. I am writing this entry so that next time I look it up, I save StackOverflow some bandwidth. Also, because my blog is cooler :)

So, the first difference between BindingList and ObservableCollection is that BindingList implements cascading notifications of change. If any of the items in the list implements INotifyPropertyChanged, it will accept any change from those items and expose it as a list changed event, including the index of the item that initiated the change. ObservableCollection does not do that. So BindingList is better, right?

Wrong. BindingList is not "properly supported" by WPF, say some. Why is that? Well, because BindingList, as its MSDN page says, is just "an alternative to implementing the complete IBindingList interface". Yes, you've got it. BindingList is a lazy, thin, ineffective implementation of the interface. The Missing Docs blog has a very good explanation of this. Do keep in mind that BindingList was created during the time of Windows Forms and is being used by WPF only as an afterthought.

So let's use ObservableCollection then! No. The functionalities implemented by BindingList are far superior to that of ObservableCollection. Just thinking that you must somehow handle changes of every object in the list is killing the idea.

A subtle recommendation on the same MSDN page goes like this: "the typical solutions programmer will use a class that provides data binding functionality, such as BindingSource, instead of directly using BindingList". Well, what does that mean? It means using System.Windows.Forms.BindingSource, which does about everything, since it implements IBindingListView, IBindingList, IList, ICollection, IEnumerable, ITypedList, ICancelAddNew, ISupportInitializeNotification, ISupportInitialize, ICurrencyManagerProvider and is also a subclass of Component. A bit heavy, though, isn't it?

An interesting idea comes from a StackOverflow user: implement IBindingList on a subclass of ObservableCollection<T>. Should be enough to implement a scalable version of IBindingList.

There is more. The BindingListCollectionView page says "Specifically, IBindingList is required for BindingListCollectionView, and IBindingListView is an optional interface that gives additional sorting and filtering support.", which indicates that IBindingListView is also useful when getting a collection view for your object.

To recap: the best solution seems to be an ObservableCollection<T> that also implements IBindingListView (which itself implements IBindingList). The implementation must be scalable (getting the index of an object that causes a change in an efficient manner), though and I wonder, if I am implementing IBindingList, why should I even bother with inheriting from ObservableCollection? The same StackOverflow user seems interested only in the INotifyCollectionChanged interface for the ObservableCollection which is also implemented by IBindingListView!

Therefore, let's implement a class that explicitly implements IBindingListView and IList<T>, then publish the members we actually use! What could possibly go wrong? My idea is to store the index of an item next to the item, therefore removing the need to search for it. It seems that I must first implement an advanced List<T>, with a fast and efficient IndexOf method, then I can basically just copy paste the BindingList code and use this class of mine as the base. Unfortunately, BindingList uses Collection<T> as the base class, which itself implements IList<T>, IList, IReadOnlyList<T>. It seems I will have to implement all.

Immediately I have hit a snag. IBindingView is very difficult to implement, since it tries to filter using a string that is interpreted as a sort of DSL, so I would use a lot of reflection and weird conditions. Sorting is not much better. This is an interface invented when .NET did not support Predicates and lambda expressions, which would make sorting and filtering trivial and the subject of another post. So I go back to implementing a scalable BindingList, and just implement INotifyCollectionChanged over it.

For an implementation of IBindingView, check this out: BindingListView

Code time.

I've decided to implement the IndexOf caching as a dictionary with the objects as keys. The values are lists of integers representing all indexes of that value or object. Frankly I never realized that IndexOf for lists was not taking a start parameter, so it only returns the first occurrence of an item in the list.

There are three classes: AdvancedCollection is a fast IndexOf implementation of Collection. AdvancedBindingList is the copy pasted code of BindingList, with the base class changed from Collection to AdvancedCollection and with INotifyCollectionChanged implemented over it. SecurityUtils is only needed for the AddNew method of IBindingList and is again copy pasted from the Microsoft code. Enjoy!

Click to collapse/expand
internal static class SecurityUtils
{
private static volatile ReflectionPermission _memberAccessPermission;
private static volatile ReflectionPermission _restrictedMemberAccessPermission;

private static ReflectionPermission memberAccessPermission =>
_memberAccessPermission ??
(_memberAccessPermission = new ReflectionPermission(ReflectionPermissionFlag.MemberAccess));

private static ReflectionPermission restrictedMemberAccessPermission =>
_restrictedMemberAccessPermission ??
(_restrictedMemberAccessPermission =
new ReflectionPermission(ReflectionPermissionFlag.RestrictedMemberAccess));

private static void demandReflectionAccess(Type type)
{
try
{
memberAccessPermission.Demand();
}
catch (SecurityException)
{
demandGrantSet(type.Assembly);
}
}

[SecuritySafeCritical]
private static void demandGrantSet(Assembly assembly)
{
var permissionSet = assembly.PermissionSet;
var accessPermission = restrictedMemberAccessPermission;
permissionSet.AddPermission(accessPermission);
permissionSet.Demand();
}

private static bool hasReflectionPermission(Type type)
{
try
{
demandReflectionAccess(type);
return true;
}
catch (SecurityException)
{
}
return false;
}

internal static object SecureCreateInstance(Type type)
{
return SecureCreateInstance(type, null, false);
}

internal static object SecureCreateInstance(Type type, object[] args, bool allowNonPublic)
{
if (type == null)
throw new ArgumentNullException(nameof(type));
var bindingAttr = BindingFlags.Instance | BindingFlags.Public | BindingFlags.CreateInstance;
if (!type.IsVisible)
demandReflectionAccess(type);
else if (allowNonPublic && !hasReflectionPermission(type))
allowNonPublic = false;
if (allowNonPublic)
bindingAttr |= BindingFlags.NonPublic;
return Activator.CreateInstance(type, bindingAttr, null, args, null);
}

internal static object SecureCreateInstance(Type type, object[] args)
{
return SecureCreateInstance(type, args, false);
}

internal static object SecureConstructorInvoke(Type type, Type[] argTypes, object[] args, bool allowNonPublic)
{
return SecureConstructorInvoke(type, argTypes, args, allowNonPublic, BindingFlags.Default);
}

internal static object SecureConstructorInvoke(Type type, Type[] argTypes, object[] args, bool allowNonPublic,
BindingFlags extraFlags)
{
if (type == null)
throw new ArgumentNullException(nameof(type));
if (!type.IsVisible)
demandReflectionAccess(type);
else if (allowNonPublic && !hasReflectionPermission(type))
allowNonPublic = false;
var bindingAttr = BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic | extraFlags;
if (!allowNonPublic)
bindingAttr &= ~BindingFlags.NonPublic;
var constructor = type.GetConstructor(bindingAttr, null, argTypes, null);
return constructor?.Invoke(args);
}

private static bool genericArgumentsAreVisible(MethodInfo method)
{
return !method.IsGenericMethod || method.GetGenericArguments().All(type => type.IsVisible);
}

internal static object FieldInfoGetValue(FieldInfo field, object target)
{
var declaringType = field.DeclaringType;
if (declaringType == null)
{
if (!field.IsPublic)
demandGrantSet(field.Module.Assembly);
}
else if (!declaringType.IsVisible || !field.IsPublic)
demandReflectionAccess(declaringType);
return field.GetValue(target);
}

internal static object MethodInfoInvoke(MethodInfo method, object target, object[] args)
{
var declaringType = method.DeclaringType;
if (declaringType == null)
{
if (!method.IsPublic || !genericArgumentsAreVisible(method))
demandGrantSet(method.Module.Assembly);
}
else if (!declaringType.IsVisible || !method.IsPublic || !genericArgumentsAreVisible(method))
demandReflectionAccess(declaringType);
return method.Invoke(target, args);
}

internal static object ConstructorInfoInvoke(ConstructorInfo ctor, object[] args)
{
var declaringType = ctor.DeclaringType;
if (declaringType != null && (!declaringType.IsVisible || !ctor.IsPublic))
demandReflectionAccess(declaringType);
return ctor.Invoke(args);
}

internal static object ArrayCreateInstance(Type type, int length)
{
if (!type.IsVisible)
demandReflectionAccess(type);
return Array.CreateInstance(type, length);
}
}

public class AdvancedCollection<T> : IList<T>,IList, IReadOnlyList<T>
{
private readonly List<T> _innerList;
private readonly Dictionary<T, List<int>> _reverseIndex;
private readonly object _syncRoot=new object();

public AdvancedCollection()
{
_innerList = new List<T>();
_reverseIndex = new Dictionary<T, List<int>>();
}

public AdvancedCollection(IList<T> list):this()
{
_innerList.Clear();
_innerList.AddRange(list);
refreshIndexes();
}

private void refreshIndexes()
{
lock (_syncRoot)
{
_reverseIndex.Clear();
for (var i = 0; i < _innerList.Count; i++)
{
var item = _innerList[i];
List<int> indexes;
if (!_reverseIndex.TryGetValue(item, out indexes))
{
indexes = new List<int>();
_reverseIndex[item] = indexes;
}
indexes.Add(i);
}
}
}

public int IndexOf(T item)
{
List<int> indexes;
if (!_reverseIndex.TryGetValue(item, out indexes)) return -1;
return indexes.Count == 0 ? -1 : indexes[0];
}

public void Insert(int index, T item)
{
lock (_syncRoot)
{
var indexesList = Enumerable.Range(index, _innerList.Count - index)
.Select(i => _reverseIndex[_innerList[i]])
.Distinct();
foreach (var indexes in indexesList)
{
for (var j = 0; j < indexes.Count; j++)
{
if (indexes[j] >= index)
{
indexes[j]++;
}
}
}
_innerList.Insert(index, item);
}
}

public void RemoveAt(int index)
{
lock (_syncRoot)
{
var indexesList = Enumerable.Range(index, _innerList.Count - index)
.Select(i => _reverseIndex[_innerList[i]])
.Distinct();
foreach (var indexes in indexesList)
{
for (var j = 0; j < indexes.Count; j++)
{
var i = indexes[j];
if (i == index)
{
indexes.RemoveAt(j);
j--;
continue;
}
if (indexes[j] > index)
{
indexes[j]--;
}
}
}
_innerList.RemoveAt(index);
}
}

public T this[int index]
{
get { return _innerList[index]; }
set
{
lock (_syncRoot)
{
var indexes = _reverseIndex[_innerList[index]];
indexes.Remove(index);
if (!_reverseIndex.TryGetValue(value, out indexes))
{
indexes = new List<int>();
_reverseIndex[value] = indexes;
}
indexes.Add(index);
indexes.Sort();
}
}
}


int IList.Add(object value)
{
return add((T) value);
}

bool IList.Contains(object value)
{
return ((IList<T>) this).Contains((T) value);
}

void IList.Clear()
{
lock (_syncRoot)
{
_innerList.Clear();
_reverseIndex.Clear();
}
}

int IList.IndexOf(object value)
{
return ((IList<T>) this).IndexOf((T) value);
}

void IList.Insert(int index, object value)
{
((IList<T>)this).Insert(index, (T)value);
}

void IList.Remove(object value)
{
var index = ((IList) this).IndexOf(value);
if (index < 0) return;
((IList) this).RemoveAt(index);
}

void IList.RemoveAt(int index)
{
((IList<T>) this).RemoveAt(index);
}

object IList.this[int index]
{
get { return ((IList<T>)this)[index]; }
set
{
var item = (T) value;
((IList<T>)this)[index] = item;
}
}

bool IList.IsReadOnly => false;

bool IList.IsFixedSize => false;

void ICollection.CopyTo(Array array, int index)
{
((IList)_innerList).CopyTo(array,index);
}

public int Count => _innerList.Count;

object ICollection.SyncRoot => _syncRoot;

bool ICollection.IsSynchronized => false;

IEnumerator<T> IEnumerable<T>.GetEnumerator()
{
return _innerList.GetEnumerator();
}

IEnumerator IEnumerable.GetEnumerator()
{
return ((IEnumerable<T>) this).GetEnumerator();
}

public void Add(T item)
{
add(item);
}

public void Clear()
{
((IList) this).Clear();
}

bool ICollection<T>.Contains(T item)
{
lock (_syncRoot)
{
return _reverseIndex.ContainsKey(item);
}
}

void ICollection<T>.CopyTo(T[] array, int arrayIndex)
{
lock (_syncRoot)
{
_innerList.CopyTo(array, arrayIndex);
}
}

bool ICollection<T>.Remove(T item)
{
var index = ((IList<T>)this).IndexOf(item);
if (index < 0) return false;
((IList<T>)this).RemoveAt(index);
return true;
}

int ICollection<T>.Count => _innerList.Count;

bool ICollection<T>.IsReadOnly => false;

int IReadOnlyCollection<T>.Count => _innerList.Count;

T IReadOnlyList<T>.this[int index] => ((IList<T>) this)[index];

private int add(T item)
{
lock (_syncRoot)
{
var index = _innerList.Count;
_innerList.Add(item);
List<int> indexes;
if (!_reverseIndex.TryGetValue(item, out indexes))
{
indexes = new List<int>();
_reverseIndex[item] = indexes;
}
indexes.Add(index);
return index;
}
}

protected virtual void ClearItems()
{
((IList<T>)this).Clear();
}

protected virtual void InsertItem(int index, T item)
{
((IList<T>)this).Insert(index,item);
}

protected virtual void RemoveItem(int index)
{
((IList<T>)this).RemoveAt(index);
}

protected virtual void SetItem(int index, T item)
{
this[index] = item;
}
}

/// <summary>
/// Provides a generic collection that supports data binding.
/// </summary>
/// <typeparam name="T">The type of elements in the list.</typeparam>
[Serializable]
[HostProtection(SecurityAction.LinkDemand, SharedState = true)]
public class AdvancedBindingList<T> : AdvancedCollection<T>, IBindingList, ICancelAddNew, IRaiseItemChangedEvents,
INotifyCollectionChanged
{
private int _addNewPos = -1;
private bool _allowEdit = true;
private bool _allowNew = true;
private bool _allowRemove = true;

[NonSerialized] private PropertyDescriptorCollection _itemTypeProperties;

[NonSerialized] private int _lastChangeIndex = -1;

[NonSerialized] private AddingNewEventHandler _onAddingNew;

[NonSerialized] private PropertyChangedEventHandler _propertyChangedEventHandler;

private bool _raiseItemChangedEvents;
private bool _raiseListChangedEvents = true;
private bool _userSetAllowNew;

/// <summary>
/// Initializes a new instance of the <see cref="T:System.ComponentModel.BindingList`1" /> class using default values.
/// </summary>
public AdvancedBindingList()
{
initialize();
}

/// <summary>
/// Initializes a new instance of the <see cref="T:System.ComponentModel.BindingList`1" /> class with the specified
/// list.
/// </summary>
/// <param name="list">
/// An <see cref="T:System.Collections.Generic.IList`1" /> of items to be contained in the
/// <see cref="T:System.ComponentModel.BindingList`1" />.
/// </param>
public AdvancedBindingList(IList<T> list)
: base(list)
{
initialize();
}

private bool itemTypeHasDefaultConstructor
{
get
{
var type = typeof (T);
return type.IsPrimitive ||
type.GetConstructor(BindingFlags.Instance | BindingFlags.Public | BindingFlags.CreateInstance,
null, new Type[0], null) != null;
}
}

/// <summary>
/// Gets or sets a value indicating whether adding or removing items within the list raises
/// <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> events.
/// </summary>
/// <returns>
/// true if adding or removing items raises <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> events;
/// otherwise, false. The default is true.
/// </returns>
public bool RaiseListChangedEvents
{
get { return _raiseListChangedEvents; }
set { _raiseListChangedEvents = value; }
}

private bool addingNewHandled
{
get
{
if (_onAddingNew != null)
return (uint) _onAddingNew.GetInvocationList().Length > 0U;
return false;
}
}

/// <summary>
/// Gets or sets a value indicating whether you can add items to the list using the
/// <see cref="M:System.ComponentModel.BindingList`1.AddNew" /> method.
/// </summary>
/// <returns>
/// true if you can add items to the list with the <see cref="M:System.ComponentModel.BindingList`1.AddNew" /> method;
/// otherwise, false. The default depends on the underlying type contained in the list.
/// </returns>
public bool AllowNew
{
get
{
if (_userSetAllowNew || _allowNew)
return _allowNew;
return addingNewHandled;
}
set
{
var num1 = AllowNew ? 1 : 0;
_userSetAllowNew = true;
_allowNew = value;
var num2 = value ? 1 : 0;
if (num1 == num2)
return;
fireListReset();
}
}

/// <summary>
/// Gets or sets a value indicating whether items in the list can be edited.
/// </summary>
/// <returns>
/// true if list items can be edited; otherwise, false. The default is true.
/// </returns>
public bool AllowEdit
{
get { return _allowEdit; }
set
{
if (_allowEdit == value)
return;
_allowEdit = value;
fireListReset();
}
}

/// <summary>
/// Gets or sets a value indicating whether you can remove items from the collection.
/// </summary>
/// <returns>
/// true if you can remove items from the list with the
/// <see cref="M:System.ComponentModel.BindingList`1.RemoveItem(System.Int32)" /> method otherwise, false. The default
/// is true.
/// </returns>
public bool AllowRemove
{
get { return _allowRemove; }
set
{
if (_allowRemove == value)
return;
_allowRemove = value;
fireListReset();
}
}

/// <summary>
/// Gets a value indicating whether <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> events are
/// enabled.
/// </summary>
/// <returns>
/// true if <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> events are supported; otherwise, false.
/// The default is true.
/// </returns>
protected virtual bool SupportsChangeNotificationCore => true;

/// <summary>
/// Gets a value indicating whether the list supports searching.
/// </summary>
/// <returns>
/// true if the list supports searching; otherwise, false. The default is false.
/// </returns>
protected virtual bool SupportsSearchingCore => false;

/// <summary>
/// Gets a value indicating whether the list supports sorting.
/// </summary>
/// <returns>
/// true if the list supports sorting; otherwise, false. The default is false.
/// </returns>
protected virtual bool SupportsSortingCore => false;

/// <summary>
/// Gets a value indicating whether the list is sorted.
/// </summary>
/// <returns>
/// true if the list is sorted; otherwise, false. The default is false.
/// </returns>
protected virtual bool IsSortedCore => false;

/// <summary>
/// Gets the property descriptor that is used for sorting the list if sorting is implemented in a derived class;
/// otherwise, returns null.
/// </summary>
/// <returns>
/// The <see cref="T:System.ComponentModel.PropertyDescriptor" /> used for sorting the list.
/// </returns>
protected virtual PropertyDescriptor SortPropertyCore => null;

/// <summary>
/// Gets the direction the list is sorted.
/// </summary>
/// <returns>
/// One of the <see cref="T:System.ComponentModel.ListSortDirection" /> values. The default is
/// <see cref="F:System.ComponentModel.ListSortDirection.Ascending" />.
/// </returns>
protected virtual ListSortDirection SortDirectionCore => ListSortDirection.Ascending;

bool IBindingList.AllowNew => AllowNew;

bool IBindingList.AllowEdit => AllowEdit;

bool IBindingList.AllowRemove => AllowRemove;

bool IBindingList.SupportsChangeNotification => SupportsChangeNotificationCore;

bool IBindingList.SupportsSearching => SupportsSearchingCore;

bool IBindingList.SupportsSorting => SupportsSortingCore;

bool IBindingList.IsSorted => IsSortedCore;

PropertyDescriptor IBindingList.SortProperty => SortPropertyCore;

ListSortDirection IBindingList.SortDirection => SortDirectionCore;

/// <summary>
/// Occurs when the list or an item in the list changes.
/// </summary>
public event ListChangedEventHandler ListChanged;

object IBindingList.AddNew()
{
var obj = AddNewCore();
_addNewPos = obj != null ? ((IList<T>) this).IndexOf((T) obj) : -1;
return obj;
}

void IBindingList.ApplySort(PropertyDescriptor prop, ListSortDirection direction)
{
ApplySortCore(prop, direction);
}

void IBindingList.RemoveSort()
{
RemoveSortCore();
}

int IBindingList.Find(PropertyDescriptor prop, object key)
{
return FindCore(prop, key);
}

void IBindingList.AddIndex(PropertyDescriptor prop)
{
}

void IBindingList.RemoveIndex(PropertyDescriptor prop)
{
}

/// <summary>
/// Discards a pending new item.
/// </summary>
/// <param name="itemIndex">The index of the of the new item to be added </param>
public virtual void CancelNew(int itemIndex)
{
if (_addNewPos < 0 || _addNewPos != itemIndex)
return;
RemoveItem(_addNewPos);
_addNewPos = -1;
}

/// <summary>
/// Commits a pending new item to the collection.
/// </summary>
/// <param name="itemIndex">The index of the new item to be added.</param>
public virtual void EndNew(int itemIndex)
{
if (_addNewPos < 0 || _addNewPos != itemIndex)
return;
_addNewPos = -1;
}

public event NotifyCollectionChangedEventHandler CollectionChanged;

bool IRaiseItemChangedEvents.RaisesItemChangedEvents => _raiseItemChangedEvents;

private void fireListReset()
{
fireListChanged(ListChangedType.Reset, -1);
CollectionChanged?.Invoke(this, new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Reset));
}

/// <summary>
/// Occurs before an item is added to the list.
/// </summary>
public event AddingNewEventHandler AddingNew
{
add
{
var num1 = AllowNew ? 1 : 0;
_onAddingNew = _onAddingNew + value;
var num2 = AllowNew ? 1 : 0;
if (num1 == num2)
return;
fireListReset();
}
remove
{
var num1 = AllowNew ? 1 : 0;
// ReSharper disable once DelegateSubtraction
_onAddingNew = _onAddingNew - value;
var num2 = AllowNew ? 1 : 0;
if (num1 == num2)
return;
fireListReset();
}
}

private void initialize()
{
_allowNew = itemTypeHasDefaultConstructor;
if (!typeof (INotifyPropertyChanged).IsAssignableFrom(typeof (T)))
return;
_raiseItemChangedEvents = true;
foreach (var obj in this)
hookPropertyChanged(obj);
}

/// <summary>
/// Raises the <see cref="E:System.ComponentModel.BindingList`1.AddingNew" /> event.
/// </summary>
/// <param name="e">An <see cref="T:System.ComponentModel.AddingNewEventArgs" /> that contains the event data. </param>
protected virtual void OnAddingNew(AddingNewEventArgs e)
{
_onAddingNew?.Invoke(this, e);
}

private object fireAddingNew()
{
var e = new AddingNewEventArgs(null);
OnAddingNew(e);
return e.NewObject;
}

/// <summary>
/// Raises the <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> event.
/// </summary>
/// <param name="e">A <see cref="T:System.ComponentModel.ListChangedEventArgs" /> that contains the event data. </param>
protected virtual void OnListChanged(ListChangedEventArgs e)
{
ListChanged?.Invoke(this, e);
}

/// <summary>
/// Raises a <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> event of type
/// <see cref="F:System.ComponentModel.ListChangedType.Reset" />.
/// </summary>
public void ResetBindings()
{
fireListReset();
}

/// <summary>
/// Raises a <see cref="E:System.ComponentModel.BindingList`1.ListChanged" /> event of type
/// <see cref="F:System.ComponentModel.ListChangedType.ItemChanged" /> for the item at the specified position.
/// </summary>
/// <param name="position">A zero-based index of the item to be reset.</param>
public void ResetItem(int position)
{
fireListChanged(ListChangedType.ItemChanged, position);
CollectionChanged?.Invoke(this,
new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Replace, this[position],position));
}

private void fireListChanged(ListChangedType type, int index)
{
if (!_raiseListChangedEvents)
return;
OnListChanged(new ListChangedEventArgs(type, index));
}

/// <summary>
/// Removes all elements from the collection.
/// </summary>
protected override void ClearItems()
{
EndNew(_addNewPos);
if (_raiseItemChangedEvents)
{
foreach (var obj in this)
unhookPropertyChanged(obj);
}
base.ClearItems();
fireListReset();
}

/// <summary>
/// Inserts the specified item in the list at the specified index.
/// </summary>
/// <param name="index">The zero-based index where the item is to be inserted.</param>
/// <param name="item">The item to insert in the list.</param>
protected override void InsertItem(int index, T item)
{
EndNew(_addNewPos);
base.InsertItem(index, item);
if (_raiseItemChangedEvents)
hookPropertyChanged(item);
fireListChanged(ListChangedType.ItemAdded, index);
CollectionChanged?.Invoke(this,
new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Add, item,index));
}

/// <summary>
/// Removes the item at the specified index.
/// </summary>
/// <param name="index">The zero-based index of the item to remove. </param>
/// <exception cref="T:System.NotSupportedException">
/// You are removing a newly added item and
/// <see cref="P:System.ComponentModel.IBindingList.AllowRemove" /> is set to false.
/// </exception>
protected override void RemoveItem(int index)
{
if (!_allowRemove && (_addNewPos < 0 || _addNewPos != index))
throw new NotSupportedException();
EndNew(_addNewPos);
if (_raiseItemChangedEvents)
unhookPropertyChanged(this[index]);
var item = this[index];
base.RemoveItem(index);
fireListChanged(ListChangedType.ItemDeleted, index);
CollectionChanged?.Invoke(this,
new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Remove, item,index));
}

/// <summary>
/// Replaces the item at the specified index with the specified item.
/// </summary>
/// <param name="index">The zero-based index of the item to replace.</param>
/// <param name="item">The new value for the item at the specified index. The value can be null for reference types.</param>
/// <exception cref="T:System.ArgumentOutOfRangeException">
/// <paramref name="index" /> is less than zero.-or-
/// <paramref name="index" /> is greater than <see cref="P:System.Collections.ObjectModel.Collection`1.Count" />.
/// </exception>
protected override void SetItem(int index, T item)
{
if (_raiseItemChangedEvents)
unhookPropertyChanged(this[index]);
base.SetItem(index, item);
if (_raiseItemChangedEvents)
hookPropertyChanged(item);
fireListChanged(ListChangedType.ItemChanged, index);
CollectionChanged?.Invoke(this,
new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Replace, item,index));
}

/// <summary>
/// Adds a new item to the collection.
/// </summary>
/// <returns>
/// The item added to the list.
/// </returns>
/// <exception cref="T:System.InvalidOperationException">
/// The <see cref="P:System.Windows.Forms.BindingSource.AllowNew" />
/// property is set to false. -or-A public default constructor could not be found for the current item type.
/// </exception>
public T AddNew()
{
return (T) ((IBindingList) this).AddNew();
}

/// <summary>
/// Adds a new item to the end of the collection.
/// </summary>
/// <returns>
/// The item that was added to the collection.
/// </returns>
/// <exception cref="T:System.InvalidCastException">
/// The new item is not the same type as the objects contained in the
/// <see cref="T:System.ComponentModel.BindingList`1" />.
/// </exception>
protected virtual object AddNewCore()
{
var obj = fireAddingNew() ?? getNewInstance();
Add((T) obj);
return obj;
}

private static object getNewInstance()
{
return SecurityUtils.SecureCreateInstance(typeof (T));
}

/// <summary>
/// Sorts the items if overridden in a derived class; otherwise, throws a <see cref="T:System.NotSupportedException" />
/// .
/// </summary>
/// <param name="prop">A <see cref="T:System.ComponentModel.PropertyDescriptor" /> that specifies the property to sort on.</param>
/// <param name="direction">One of the <see cref="T:System.ComponentModel.ListSortDirection" /> values.</param>
/// <exception cref="T:System.NotSupportedException">Method is not overridden in a derived class. </exception>
protected virtual void ApplySortCore(PropertyDescriptor prop, ListSortDirection direction)
{
throw new NotSupportedException();
}

/// <summary>
/// Removes any sort applied with
/// <see
/// cref="M:System.ComponentModel.BindingList`1.ApplySortCore(System.ComponentModel.PropertyDescriptor,System.ComponentModel.ListSortDirection)" />
/// if sorting is implemented in a derived class; otherwise, raises <see cref="T:System.NotSupportedException" />.
/// </summary>
/// <exception cref="T:System.NotSupportedException">Method is not overridden in a derived class. </exception>
protected virtual void RemoveSortCore()
{
throw new NotSupportedException();
}

/// <summary>
/// Searches for the index of the item that has the specified property descriptor with the specified value, if
/// searching is implemented in a derived class; otherwise, a <see cref="T:System.NotSupportedException" />.
/// </summary>
/// <returns>
/// The zero-based index of the item that matches the property descriptor and contains the specified value.
/// </returns>
/// <param name="prop">The <see cref="T:System.ComponentModel.PropertyDescriptor" /> to search for.</param>
/// <param name="key">
/// The value of
/// <paramref>
/// <name>property</name>
/// </paramref>
/// to match.
/// </param>
/// <exception cref="T:System.NotSupportedException">
/// <see cref="M:System.ComponentModel.BindingList`1.FindCore(System.ComponentModel.PropertyDescriptor,System.Object)" />
/// is not overridden in a derived class.
/// </exception>
protected virtual int FindCore(PropertyDescriptor prop, object key)
{
throw new NotSupportedException();
}

private void hookPropertyChanged(T item)
{
var notifyPropertyChanged = (object) item as INotifyPropertyChanged;
if (notifyPropertyChanged == null)
return;
if (_propertyChangedEventHandler == null)
_propertyChangedEventHandler = Child_PropertyChanged;
notifyPropertyChanged.PropertyChanged += _propertyChangedEventHandler;
}

private void unhookPropertyChanged(T item)
{
var notifyPropertyChanged = (object) item as INotifyPropertyChanged;
if (notifyPropertyChanged == null || _propertyChangedEventHandler == null)
return;
notifyPropertyChanged.PropertyChanged -= _propertyChangedEventHandler;
}

private void Child_PropertyChanged(object sender, PropertyChangedEventArgs e)
{
if (!RaiseListChangedEvents)
return;
if (sender != null && e != null)
{
if (!string.IsNullOrEmpty(e.PropertyName))
{
T obj;
try
{
obj = (T) sender;
}
catch (InvalidCastException)
{
ResetBindings();
return;
}
var newIndex = _lastChangeIndex;
if (newIndex < 0 || newIndex >= Count || !this[newIndex].Equals(obj))
{
newIndex = IndexOf(obj);
_lastChangeIndex = newIndex;
}
if (newIndex == -1)
{
unhookPropertyChanged(obj);
ResetBindings();
return;
}
if (_itemTypeProperties == null)
_itemTypeProperties = TypeDescriptor.GetProperties(typeof (T));
var propDesc = _itemTypeProperties.Find(e.PropertyName, true);
OnListChanged(new ListChangedEventArgs(ListChangedType.ItemChanged, newIndex, propDesc));
return;
}
}
ResetBindings();
}
}

I've come upon this strange Not enough storage is available to complete this operation ArgumentException when creating an instance of EventSource derived classes. This class is responsible for creating entries in Windows logs. Strangely enough, there are very few articles on the Internet connecting the class with this particular exception, so I started to investigate. One important thing to notice is that the exception is intermittent. Basically you can cycle a few times with a try/catch block and get a valid instance. That seems to indicate some sort of race condition. So far, this is the easy solution I could find. However, I really wanted to know why does it happen.

If I remove the EventSource class from the searches I get more pages reporting the same exception and one of the reasons that people say it happens is related to the size of the registry. Retrospectively it makes sense, but it never occurred to me that the system registry has a maximum size. But is that the problem? Looking with the EventViewer summary I see something like this:

Of course, the most obvious thing there is the exact size of each log category: 20.00 MB. If one right-clicks on any of the log groups and goes to Properties, the size limit for each is clearly shown and configurable. So is that the problem?

The exception is thrown almost exclusively when the logging is heavy: multiple threads trying to log stuff at the same time. Since retrying usually solves the problem, my guess is that the exception is thrown somewhere between the request for a new log entry and the process that eliminates old entries to allow for new ones. Unfortunately I don't see any configuration option for how many entries to eliminate. I would have liked to clear, let's say, 20% of the log when it is full to make this problem less relevant. Perhaps hidden in the bowels of the system registry there is a way to set this, but at this time I don't know it. Nor is it clear if I have the option to remove more of the less important events rather than just the oldest. Clearly the EventLog class in .NET supports deleting individual log entries, so this is feasible if it ever becomes a real problem.

So far, my solution is to just try again when the error is thrown:
LoggerEventSource eventSource = null; //EventSource derived class (see documentation)
for (var i = 0; i < 5 && eventSource == null; i++)
{
try
{
eventSource = new LoggerEventSource();
}
catch (ArgumentException)
{
Thread.Sleep(100);
}
}

I had this situation where I had to execute large SQL script files and the default sqlcmd tool was throwing exceptions rather than execute them. So I created my own tool to read the scripts and execute them transactionally. Everything went smoothly, except at the end. You see, I didn't use TransactionScope.Complete from the beginning in order to see how the program would cope with a massive rollback. Not well, apparently.

The exception was thrown at rollback: Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. I had set the TransactionOptions.Timeout to TransactionManager.MaximumTimeout and the SqlCommand.CommandTimeout to 0 (meaning never end) and I still got the exception. Apparently, the problem was the SqlConnection.ConnectTimeout which is a readonly property with a default value of 15 seconds. The value can be changed via the connection string, by adding something like Connect Timeout=36000 (10 hours) and many articles on the Internet suggest doing that. However, that is just really ugly. A better solution is to set the value of the timeout programmatically and this is how to do it:
var timeout = TimeSpan.FromHours(10);
SqlConnectionStringBuilder csb = new SqlConnectionStringBuilder(connectionString);
csb.ConnectTimeout = (int)timeout.TotalSeconds;
connectionString = csb.ConnectionString;

As you can see, the nice SqlConnectionStringBuilder helps us validate, parse and change the values in the connection string. One can imagine other interesting uses, like adding MARS to the connection string automatically or restricting the use to a list of databases or disallowing weak passwords, etc.

and has 0 comments
I needed to get all IP addresses in a range, so I applied the mask to my current IP and started to work through the minimum and maximum values of bytes to get the result. I had a code that looked like this:
for (var b = min; b <= max; b++) { //do stuff }
where min was 0 and max was 255.

The expected result: all values from 0 to 255. The result: infinitely running code. Can you spot why?

Yes, when min and max are bytes, b is also a byte, so when it gets to 255 and does b++ the value becomes 0 again. Fun, eh?

and has 0 comments
As you know from the previous post, I am working on a network monitor application that displays information about the devices in my local network. For that I need to ping them to see if they are available. The simplest solution is to use the out-of-the-box solution of System.Net.NetworkInformation.Ping. It was no little shock to stop debugging my application and find myself facing a Blue Screen of Death, you know, the blue thing with white text that means everything is fucked, with the error message PROCESS_HAS_LOCKED_PAGES.

Googling around I found that the problem is, indeed, coming from the Ping class. Since the application is full with BackgroundWorkers and threads and stuff like that, Ping was actually the furthest from my mind. I even suspected that my laptop is dying. Microsoft, blessed be their hearts, not only did they ignore the bug, which is logged on their Connect site, but they eventually closed it with no resolution. Therefore I resolved to find a solution by myself.

I tried to see if there are any alternatives to the Ping class. I downloaded two implementations: PingWin and Pinger, both seemingly functional. PingWin, was using the Windows IcmpSendEcho function, via Pinvoking icmp.dll. Pinger was using raw sockets. After replacing the Ping class with a class with the same members and properties I was using, but wrapping PingWin, I checked to see if the application was behaving as expected, then stopped debugging. Again I got the BSOD, suggesting what I had read from other people with the same problem, that it is not a .NET managed code issue, but instead it is a problem stemming from the lower level code in the Windows operating system.

As noted in the IcmpSendEcho documentation, there are two implementations, one included in Icmp.dll, which comes from Windows 2000, and one included in Iphlpapi.dll, which comes included in Windows XP and later. Replacing the target of the DllImport attribute to Iphlpapi.dll resulted in an application that works exactly the same, crashing just the same. Looking at the source code of the Ping class, I see that it is using the same mechanism, calling the functions exported by Iphlpapi.dll.

Using the raw socket implementation did not cause a crash, though, so I can recommend you use it, if you can, since everything using Iphlpapi.dll or Icmp.dll seems to be affected by this. There are some limitations to using raw sockets in Windows, but I think ICMP may be exempt. You should research some more if you want to use it in an application that must work in all kind of security environments.

In this post I will discuss the following:
First, let's discuss the project that I was working on which led to this work. I wanted to do a program that manages the devices on my network. There is a router and several Wi-fi extenders, all of them with an HTTP interface. I wanted to know when they are reachable through the network, connect to the HTTP interface and gather data or perform actions like resetting the device and so on. In order to see if they were reachable, I was pinging them every second, so I thought I would like to see the evolution of the ping roundtrip time in a visual way, therefore the chart.

All of the values that I was displaying and all the commands that were available on the interface were using MVVM, the pattern developed by Microsoft for a better separation of presentation and data model. MVVM presents some difficulties, though, since most of the time directly getting the data and displaying it is more efficient and easier to do. It does allow for fantastic flexibility and good maintenance of the project. So, since I am a fan, I wanted to draw this chart via MVVM as well.

The MVVM chart


In order to do that I needed a viewmodel that abstracted the chart. Since I had several devices, each of them with a collection of pings containing the time of the ping and a nullable rountrip value, it would have been way too annoying to try to chart the values directly, so on the main viewmodel I created a specific chart model. This model contained a BindingList of items of various custom types: GraphLines, GraphStarts and GraphEnds. When the ping failed I added an "end" to the model. When the ping succeeded after a fail, I would add a "start". And when the ping was continuously successful, I would add a "line" connecting the previous ping to the current one.

So, in order to draw anything, I used a Canvas. The Canvas is a very simple container that can position stuff at absolute values. The first thing you need to realize is that it is not a vectorial type of container, so when you draw something on a small canvas and you resize the window, everything remains at the same position and size. The other thing that quickly becomes apparent is that there are various ways of positioning objects on the Canvas. The attached properties Canvas.Top, Canvas.Left, Canvas.Bottom and Canvas.Right can define the position of TextBlocks or other elements, including Rectangles and Ellipses. Lines, on the other hand, whether simple Line objects or something more complex, like Paths, are positioned using Points and X,Y coordinates. This would come to bite me on the ass later on.

WPF is very flexible. In order to add things to a Canvas, all one needs to do is to declare an ItemsControl and then redefine the ItemsPanel property to be a Canvas. The way objects are represented on the Canvas can be defined via DataTemplates, in my case one for each type of item. So I created a template that contains a Line for the GraphLine type, another for GraphStart, containing a Rectangle, and one for GraphEnd, containing an Ellipse. Forget the syntax right now, first I had to solve the problem of the different ways to position something on a Canvas and the ItemsControl. You see, in order to position a Line, all you have to do is set the X1,Y1,X2,Y2 properties, but for Ellipses and Rectangles you need to set Canvas.Left and Canvas.Top. The problem with the ItemsControl is that for each of these not primitive objects it creates a ContentPresenter to encapsulate them, therefore setting Canvas properties to the inner shape did nothing. The solution is to set a style for the ContentPresenter and set the Canvas properties on it. Surprise! Then the Lines stop working! The solution was to add several Canvases, one for the lines and one for the rectangles and ellipses, as ItemsControls, and one for static text and stuff like that, all in the same Container so that they overlap. But it worked. Then I started the program and watched the chart being displayed.

<ItemsControl ItemsSource="{Binding GraphItems}" Name="GraphLines">
<ItemsControl.Resources>
<DataTemplate DataType="{x:Type local:GraphLine}">
...
</DataTemplate>
<DataTemplate DataType="{x:Type local:GraphSpline}">
...
</DataTemplate>
<DataTemplate DataType="{x:Type local:GraphStart}">
...
</DataTemplate>
<DataTemplate DataType="{x:Type local:GraphEnd}">
...
</DataTemplate>
</ItemsControl.Resources>
<ItemsControl.ItemsPanel>
<ItemsPanelTemplate>
<Canvas/>
</ItemsPanelTemplate>
</ItemsControl.ItemsPanel>
</ItemsControl>

But how did I calculate the coordinates of all of these items? As I said, the Canvas is a pretty static thing. If I resized the window, the items would remain in the same position and with the same size. Also, the viewmodel didn't have (and shouldn't have had) an idea of the actual size of the drawing Canvas. My solution was to use a MultiBinding with a custom converter. It would get two values, one would be a computed double value, from 0 to 1, that represented either vertical or horizontal position, the second would be the value of the dimension, the height or the width. The result would be, of course, the product of the two values. Luckily WPF has a very flexible Binding syntax, so it was no problem two define a value from the viewmodel and a value of the ActualWidth or ActualHeight properties of the Canvas object. This resulted in a very nice graph that adapted to my resizing of the window in real time without me having to do anything.

<Line Stroke="{Binding Ip, Converter={StaticResource TextToBrushConverter}}" StrokeThickness="2" >
<Line.X1>
<MultiBinding Converter="{StaticResource ResizeConverter}">
<Binding Path="X"/>
<Binding Path="ActualWidth" RelativeSource="{RelativeSource Mode=FindAncestor, AncestorType={x:Type Canvas}}"/>
</MultiBinding>
</Line.X1>
<Line.Y1>
<MultiBinding Converter="{StaticResource ResizeConverter}">
<Binding Path="Y"/>
<Binding Path="ActualHeight" RelativeSource="{RelativeSource Mode=FindAncestor, AncestorType={x:Type Canvas}}"/>
</MultiBinding>
</Line.Y1>
<Line.X2>
<MultiBinding Converter="{StaticResource ResizeConverter}">
<Binding Path="X2"/>
<Binding Path="ActualWidth" RelativeSource="{RelativeSource Mode=FindAncestor, AncestorType={x:Type Canvas}}"/>
</MultiBinding>
</Line.X2>
<Line.Y2>
<MultiBinding Converter="{StaticResource ResizeConverter}">
<Binding Path="Y2"/>
<Binding Path="ActualHeight" RelativeSource="{RelativeSource Mode=FindAncestor, AncestorType={x:Type Canvas}}"/>
</MultiBinding>
</Line.Y2>
</Line>

Performance


The next issue in the pipeline was performance. Clearing the GraphItems collection and adding new items to it was very slow and presented some ugly visual artifacts. For this I used the inner mechanisms of the BindingList object. First I set the RaiseListChangedEvents property to false, so that the list would not fire any events to the WPF mechanism. Then I cleared the list,added every newly calculated GraphItem to the list, set RaiseListChangedEvents back to true and fired a ListChanged event forcefully using the (badly named) ResetBindings method.

GraphItems.RaiseListChangedEvents = false;
GraphItems.Clear();
foreach (var item in items)
{
GraphItems.Add(item);
}
GraphItems.RaiseListChangedEvents = true;
this.Dispatcher.Invoke(GraphItems.ResetBindings, DispatcherPriority.Normal);

All good, but then the overall performance of the application was abysmal. I would move to another program, then switch back to it and it wouldn't show up, or I would press a button and it wouldn't show up pressed, or the values of the data from the devices were not displayed sometimes. It wasn't that it used too much CPU or memory or anything like that, it was just a very sluggish user experience.

First idea was that the binding to the parent Canvas object to get the ActualWidth and the ActualHeight values was slow. I was right. In order to test this I removed any bindings to the Canvas and instead set the values directly to the converter, via the SizeChanged event of the Canvas object. This made things slightly faster, but also made them look weird, since I would resize the window and only see a difference after SizeChanged fired. The performance gain was significant, but not that large. The UI was still sluggish.

void Canvas_SizeChanged(object sender, SizeChangedEventArgs e)
{
var resizeConverter = (ResizeConverter)this.Resources["ResizeConverter"];
resizeConverter.Size = e.NewSize;
}

Now, you would ask yourself, what is the purpose of my using this ItemsControl and Canvas combination? It is in order to use the MVVM pattern. Just drawing directly on the Canvas would violate that, wouldn't it? Or would it? In this case the binding of the values in the viewmodel to the chart is one way. I only need to display stuff and nothing that happens on the chart UI changes the viewmodel. Also, since I chose to recreate all the chart items at every turn, it just means I am delegating clearing the Canvas and drawing everything to the WPF mechanism, nothing more. In fact, if I would just subscribe to the GraphItems ListChanged event I would be able to draw everything and not really have any strong link between data model and presentation. So I did that. The side effect of this was that I didn't need two ItemsControl/Canvas instances. I only needed one Canvas and I would add items to it as I saw fit.

Of course, the smart reader that you are, you realized that I need to know the type of the viewmodel in order to subscribe to the items list. The very correct way to do it would have been to encapsulate the Canvas into a control that would have received a list of items as a model and it would have handled all the drawing itself. It makes sense: you don't want a Canvas, what you really want is a Chart component that handles everything for you. I leave that to the enterprising reader, since it is outside the scope of this post.

Another thing that I did not do and it probably made sense in terms of performance, was to add items to the chart, somehow translate the position of the chart and remove the items that were outside the visible portion of the chart. That sounds like a good feature of the Chart control :) Again, I leave it to the reader to try to do something like that.

Bezier curves instead of lines


The last thing that I want to cover is making the chart less jagged. The roundtrip ping values were all over the place resulting in a jagged line kind of chart. I wanted something smoother, like a continuous curvy line. So I decided to replace the Line representation with a Bezier curve one. I am not a graphical person, neither a math geek. I had no idea what a Bezier curve is, only that it helps in creating these nice looking curves that blend into each other. Each Bezier curve is defined by four points so, in my ignorance, I thought that I just have to pass four points from the list instead of the two required to form a Line. The result was hilarious, but not what I wanted.

Reading the theory we learn that... what the hell is that on Wikipedia? How can anyone understand that?!... Ugh!

So let's start with some experiments. Let's use the wonderful XamlPadX application to see some examples of that using WPF. First, let's draw a jagged three line graphic and try to use the four points to define a Bezier curve and see what happens.

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:sys="clr-namespace:System;assembly=mscorlib" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
<Canvas>
<Line X1="100" Y1="100" X2="200" Y2="300" Stroke="Gray" StrokeThickness="2"/>
<Line X1="200" Y1="300" X2="300" Y2="150" Stroke="Gray" StrokeThickness="2"/>
<Line X1="300" Y1="150" X2="400" Y2="200" Stroke="Gray" StrokeThickness="2"/>
<Path Stroke="Red" StrokeThickness="2">
<Path.Data>
<PathGeometry>
<PathGeometry.Figures>
<PathFigureCollection>
<PathFigure StartPoint="100,100">
<PathFigure.Segments>
<PathSegmentCollection>
<BezierSegment Point1="200,300" Point2="300,150" Point3="400,200" />
</PathSegmentCollection>
</PathFigure.Segments>
</PathFigure>
</PathFigureCollection>
</PathGeometry.Figures>
</PathGeometry>
</Path.Data>
</Path>
</Canvas>
</Page>



As we can see, the curve does touch the first and the fourth points and sort of approximates the line, but not very clearly. The problem becomes even more obvious when we add another point and we create two Bezier curves, from the first and last four points. The two curves intersect, they are not continuous. Even if you take points four by four, the resulting curves, even if they continue each other, they do it with straight corners, the opposite of what I wanted.




Let's try the opposite, let's draw one Bezier curve and then lines that connect the first and second and then the third and fourth points. We see that the lines define tangents to the two arcs comprising the Bezier curve. That intuitively tells us something: if two Bezier curves would to seamlessly blend into each other, then the straight lines that define them would also have to be continuous. We try that in XamlPadX and yes! It works.




So, from this we learn something. First of all, the first and last points of the Bezier have to be the points used in a normal Line. Then the last two points need to be part of the same line for the first two points of the next curve. So what about the second and third points? How do I choose those? Can I choose any lines to define my curves? Thinking of the chart that I am looking for, I just want that the jagged edges turn into nice little curves. I also don't want to think of other points than the points that would normally define a single line, that means I shouldn't use future data in defining the middle points of the curve that defines current data. So I just made the decision to use only horizontal lines to define curves. That means for any pair of coordinates X1,Y1, X2,Y2 I would create four pairs like this: X1,Y1 X1+something,Y1 X2-something,Y2 X2,Y2. That value could be anything, but I've decided it would be a percentage of the horizontal distance between two points.

Final result: using a percentage, let's say 20%, I would turn the pair of coordinates into X1,Y1 X1+(X2-X1)*0.2 X1+(X2-X1)*(1-0.2) X2,Y2. Let's see how that looks on the original jagged line. Let's use 50% instead. And for some fun, let's put it to 80%, 100% and even 200%.

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:sys="clr-namespace:System;assembly=mscorlib" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
<Canvas>
<Line X1="100" Y1="100" X2="200" Y2="300" Stroke="Gray" StrokeThickness="2"/>
<Line X1="200" Y1="300" X2="300" Y2="150" Stroke="Gray" StrokeThickness="2"/>
<Line X1="300" Y1="150" X2="400" Y2="200" Stroke="Gray" StrokeThickness="2"/>
<Path Stroke="Red" StrokeThickness="2">
<Path.Data>
<PathGeometry>
<PathGeometry.Figures>
<PathFigureCollection>
<PathFigure StartPoint="100,100">
<PathFigure.Segments>
<PathSegmentCollection>
<BezierSegment Point1="150,100" Point2="150,300" Point3="200,300" />
</PathSegmentCollection>
</PathFigure.Segments>
</PathFigure>
<PathFigure StartPoint="200,300">
<PathFigure.Segments>
<PathSegmentCollection>
<BezierSegment Point1="250,300" Point2="250,150" Point3="300,150" />
</PathSegmentCollection>
</PathFigure.Segments>
</PathFigure>
<PathFigure StartPoint="300,150">
<PathFigure.Segments>
<PathSegmentCollection>
<BezierSegment Point1="350,150" Point2="350,200" Point3="400,200" />
</PathSegmentCollection>
</PathFigure.Segments>
</PathFigure>
</PathFigureCollection>
</PathGeometry.Figures>
</PathGeometry>
</Path.Data>
</Path>
</Canvas>
</Page>







That's it, folks. I hope you enjoyed this as much as I did and it helps you in future projects.

and has 0 comments
I had this situation where I had to match a string by several regular expressions and choose the most specific match. Let me explain it a little bit further: you have a string and several regular expressions that match that string. The requirement is to choose which one matches better. This would be useful if, for example, you want to match mobile manufacturers and so you define one configurations for Apple and another for Android and another for the rest. The regular expressions would be "Apple", "Android" and ".*" (which matches everything). So you would want to choose only "Apple" for Apple devices and not ".*".

Now, I've studied regular expressions a bit, but I don't want to implement a regular expression parser in order to compute the complexity of the expression tree. What I want is to have various Regex objects and, somehow, compare their complexity. I am not going to pretend that I understand what goes on within the Regex object, instead I will say that I noticed the complexity of a regular expression is directly proportional to the length of the pattern and, in the case of the Regex object, with the number of items in the _codes int32 array found in the code RegexCode object found as a private field of the Regex object.

So, the simplest code for that is this:
private double regexComplexity(string pattern)
{
var reg = new Regex(pattern, RegexOptions.Singleline | RegexOptions.IgnoreCase);
var codeField = reg.GetType().GetField("code", BindingFlags.Instance | BindingFlags.NonPublic);
var code = codeField.GetValue(reg);
var _codesField = code.GetType().GetField("_codes", BindingFlags.Instance | BindingFlags.NonPublic);
var codes = (int[])_codesField.GetValue(code);
return codes.Length;
}

However we must take into consideration several cases:
  • The regular expression pattern might be wrong
  • Reflection is slow

So, let's first catch all exceptions and use the length of the pattern as the complexity and then find a way to cache the complexity of a string, in case we use it more than once. Also, cache the FieldInfo objects for use at every call.

Here is the final code:
public static class RegularExpressionExtensions
{
private static ConcurrentDictionary<string, int> _dict;
private static FieldInfo _codeField;
private static FieldInfo _codesField;

static RegularExpressionExtensions()
{
_dict = new ConcurrentDictionary<string, int>();
_codeField = typeof(Regex).GetField("code", BindingFlags.Instance | BindingFlags.NonPublic);
_codesField = _codeField.FieldType.GetField("_codes", BindingFlags.Instance | BindingFlags.NonPublic);
}

public static int Complexity(this Regex reg)
{
if (reg == null) return 0;
var pattern = reg.ToString();
var complexity = _dict.GetOrAdd(pattern, p => getComplexity(reg));
return complexity;
}

private static int getComplexity(Regex reg)
{
var code = _codeField.GetValue(reg);
var codes = (int[])_codesField.GetValue(code);
return codes.Length;
}
}

Basically we encapsulate the Regex complexity in an static extension class that we can use on any Regex instance as reg.Complexity().